Landau damping of spin waves in trapped Boltzmann gases
نویسندگان
چکیده
A semiclassical method is used to study Landau damping of transverse pseudospin waves in harmonically trapped ultracold gases in the collisionless Boltzmann limit. In this approach, the time evolution of a spin is calculated numerically as it travels in a classical orbit through a spatially dependent mean field. This method reproduces the Landau damping results for spin-waves in unbounded systems obtained with a dielectric formalism. In trapped systems, the simulations indicate that Landau damping occurs for a given spin-wave mode because of resonant phase space trajectories in which spins are ”kicked out” of the mode (in spin space). A perturbative analysis of the resonant and nearly resonant trajectories gives the Landau damping rate, which is calculated for the dipole and quadrupole modes as a function of the interaction strength. The results are compared to a numerical solution of the kinetic equation by Nikuni et al.
منابع مشابه
Anisotropic Spin Diffusion in Trapped Boltzmann Gases
Recent experiments in a mixture of two hyperfine states of trapped Bose gases show behavior analogous to a spin-1/2 system, including transverse spin waves and other familiar Leggett-Rice-type effects. We have derived the kinetic equations applicable to these systems, including the spin dependence of interparticle interactions in the collision integral, and have solved for spinwave frequencies ...
متن کاملشبیه سازی ذرهای میرایی غیر خطی لانداؤ در پلاسمای برخوردی و غیر برخوردی
In this article, non-linear Landau damping and generation of BGK mode in non-magnetized plasma are studied by using particle simulation. As plasma environment consists of electrons and ions, it is simulated by particle method and it is supposed that ions are considered as a motionless background. On the other hand, electron’s dynamic is obtained from solving Newton’s equation and the electron...
متن کاملSpin drag of a Fermi gas in a harmonic trap.
Using a Boltzmann equation approach, we analyze how the spin drag of a trapped interacting fermionic mixture is influenced by the nonhomogeneity of the system in a classical regime where the temperature is much larger than the Fermi temperature. We show that for very elongated geometries, the spin damping rate can be related to the spin conductance of an infinitely long cylinder. We characteriz...
متن کاملMeasurement of Landau damping and the evolution to a BGK equilibrium.
Linear Landau damping and nonlinear wave-particle trapping oscillations are observed with standing plasma waves in a trapped pure electron plasma. For low wave amplitudes, the measured linear damping rate agrees quantitatively with linear Landau damping theory. At larger amplitudes, the wave initially damps at the Landau rate, then regrows and oscillates, approaching a steady state, as predicte...
متن کاملLarge amplitude spin waves in ultra-cold gases
We discuss the theory of spin waves in non-degenerate ultra-cold gases, and compare various methods which can be used to obtain appropriate kinetic equations. We then study non-hydrodynamic situations, where the amplitude of spin waves is sufficiently large to bring the system far from local equilibrium. The full position and momentum dependence of the distribution function must then be retaine...
متن کامل